
A Task Details

In this section, we give additional information on the tasks studied in this work. We give verbal descriptions
in Appx. A.1, definitions of data scales in Appx. A.2, and details on the evaluation procedures in Appx. A.3.

A.1 Task Descriptions

• FoldSock. Fold a sock (with random configuration) neatly in half.
• HangOvenMitt. Hang an oven mitt (with random position and orientation) on a hook (fixed position).
• HangTape. Hang a roll of masking tape (with random initial position) on a hook (fixed position).
• NutInsertion. Insert a plastic nut (with random initial position) on a peg (fixed position).
• Square: Insert a square nut on a square peg (from [24]).
• SoupInBasket: Place a small soup can into a basket (from [29]).
• BookInCaddy: Place a book into a narrow book caddy (from [29]).
• StackBowls: Stack two bowls together and place both on a plate (from [29]).
• RedMugOnPlate: Put a red mug on a specific plate (from [29]).
We illustrate initial and final states of our real-world and simulation tasks in Fig. 8. We include an
illustration of initial state distributions, sample initial and successful states, and sample camera observations
for the NutInsertion and HangTape tasks in Fig. 9.

Figure 8: Initial and final success states in 4 real-world environments (top) and 5 simulation environments (bottom).

A.2 Data Scale Definitions

For concision, and to focus on trends, we abbreviate data scales (i.e., number of demonstrations) as low (#),
medium (⇧), and high (") for each of human demonstrations (H) and autonomous rollouts (A). Due to the
fact that tasks vary widely in difficulty, the absolute value of demonstrations for each data scale varies per
task. We include these values in Table 1.

Env #H ⇧H #A ⇧A "A
FoldSock 100 250 — — —

HangOvenMitt 200 500 — — —
HangTape 20 50 40 100 320

NutInsertion 50 100 100 250 —-
Square 10 50 100 200 500

SoupInBasket 2 5 50 — 100
BookInCaddy 2 5 50 — 100
StackBowls 2 5 50 — 100

RedMugOnPlate 2 5 50 — 100
Table 1: Legend of data scales for each environment.

Example. To generate the training set for the #H + #A setting on the NutInsertion task, we do the following:
• Collect 50 human demonstrations from randomly sampled initial states.
• Train an initial policy on the human demonstrations to convergence (approximately 47% success rate).

12



Figure 9: For the HangTape and NutInsertion tasks, we include scene images depicting the initial state distribution
(using an overlay of initial state samples), a sample initial state, a successful state, and a view of the initial state from
the wrist camera’s perspective.

• Collect 100 successful autonomous rollouts (by rolling out the policy over 200 times and filtering out the
failures).

A.3 Evaluation Procedure

Unless otherwise specified, all success rates in this work are calculated by uniformly sampling an initial
state s0⇠r0 and rolling out the learned policy under consideration until either a success state is achieved or
a maximum time horizon is reached. For all simulation results, we perform 200 trials. For all real results,
we perform 100 trials.

A.4 Success Detection and Resets

In this section, we provide additional details and rationales for the success detection and reset pipelines that
we used in our real-world tasks. For tasks in simulation, success detection and resets were provided by the
environment.

A.4.1 Success Detection
• FoldSock. As we found that scripting a sock-foldedness detector based on heuristics like object shape and

area produced false positive and false negative rates on the order of 20%, we attempted to train a success
classifier using a similar procedure to [18]. We assemble a training dataset of 200 human demonstrations
(which are curated to be always successful) and roughly 700 rollouts from the autonomous collection
policy (which we hand-label as success or failure). The training set includes 301 successful trajectories
and 438 failure trajectories, and we sample from the end from each rollout (last 5 images) to yield
images to associate with the success/failure label. We train a ResNet-18-based architecture with a binary
classification head. The validation error of the trained classifier is approximately 15%.

• HangOvenMitt, HangTape, NutInsertion. These tasks include bottlenecks which must be reached in order
to succeed at the task: hanging an object on a hook or placing an object on a peg. Therefore, successes
and failures are easy to separate. For simplicity, we use scripted rules similar to prior work (e.g., [10]).
Specifically, we use color thresholds at pixels located at these bottlenecks, coupled with the condition
that the gripper must be open for five steps prior to success. This ensures that the agent has placed the
relevant object at the bottleneck in question. We manually verify that the error rate of this detection
scheme is near-zero. While we could in principle train classifiers to learn the boundary between success
and failure, our higher-level message is that environment challenges like success detection can be a
bottleneck for realistic tasks like FoldSock, and can influence task design to make tasks more constrained
such that success and failure are easy to detect. In §4, we set aside environment challenges (i.e., assume

13



that robust success detection is available) in order to study whether autonomous IL can reduce human
supervision challenges.

A.4.2 Resets

In our study, we use object-centric primitives of various complexity to perform resets. Instrumenting
environments with hand-crafted primitives, physical reset mechanisms, or requiring humans to perform
resets is a common technique in real-world reinforcement learning [20, 21]. As we illustrate in §3, the
human effort of environment design (e.g., by instrumenting the environment to make reset primitives
possible) remains when we utilize autonomous IL methods, and these can get more involved as we move
towards more useful and complex tasks.
• FoldSock. We reset the scene by flinging the sock: locating the sock using a segmentation pipeline

(GroundingDINO [32] + FastSAM [33]), picking it up using a top-down grasp, bringing it to the center
of the workspace, and executing a fling primitive to randomize its configuration for the next episode.

• HangOvenMitt. The final state of the mitt has two cases—in the case of success, the mitt is hanging and
the mitt can be pulled off the hook by replaying a pre-recorded trajectory; in the case of failure, the mitt
is pulled back to a reachable location via a string attached to the robot—and in both cases, the mitt’s
location is then randomized using a parameterized pick-and-place primitive.

• HangTape. We follow a similar procedure as in HangOvenMitt: if the tape is on the hook (i.e., the
previous episode was successful), we replay a pre-recorded trajectory to pull it off of the hook. Otherwise,
we detect the location of the tape using a simple color mask and execute a pick-and-place primitive to
randomize its initial location for the next episode.

• NutInsertion. We once again utilize the fact that the final state of the previous episode is either a success,
for which the nut can be removed from the peg using a pre-recorded trajectory, or a failure, for which the
nut’s location can be randomized using a pick-and-place primitive.

B Analyzing Human Supervision: Additional Results

In this section, we provide further details on the results in §4 of the main text. In Appx. B.1, we ablate the
choice of training from scratch on human-autonomous mixtures (the recipe used in all experiments in the
main text). We also provide additional details regarding training with different data weights (Appx. B.2),
data scales (Appx. B.3), policy class (Appx. B.3.1), number of rounds (Appx. B.4), and novelty-based
reweighting (Appx. B.5), active learning from failures (Appx. B.6), and offline RL (Appx. B.7). While
experiments in the main text focus on autonomous data collected in-distribution, we provide additional
experiments in Appx. B.8 on training with autonomous data collected from out-of-distribution (OOD)
scenarios. Finally, we provide qualitative examples of human and autonomous trajectory distributions in
Appx. B.9.

B.1 Training from Scratch vs. Fine-tuning

All of the models trained on human-autonomous data mixtures in §4 are trained from scratch until
convergence. In this subsection, we justify this choice by comparing training from scratch to methods
involving fine-tuning.
Specifically, we focus on a single round of autonomous collection for the Square task in simulation. Unless
otherwise specified, each model is trained on a mixture of 50% autonomous, 50% human data. We compare
the following training recipes:
• Scratch: Train a new model from scratch on the human-autonomous mixture.
• Fine-tune: Fine-tune the autonomous policy checkpoint that generated the autonomous data on the

human-autonomous mixture.
• Pre-train Autonomous + Fine-tune: Pre-train a policy from scratch on the autonomous data only, and

then fine-tune on the human-autonomous mixture.
• Scratch Add: Directly aggregate human and auto data in one dataset (no explicit 50-50 sampling), and

train from scratch on this dataset.
In Table 2, we find that training from scratch, fine-tuning from the base policy, and training on combined
human and auto datasets all perform comparably. In fact, training methods seem to matter much less than

14



the amount of autonomous data provided. Therefore, for simplicity, we use the Scratch training method for
all other experiments in the main text.

Method ⇧H + #A ⇧H + ⇧A ⇧H + "A
Scratch 69% 61.5% 79.5%

Fine-tune 68.5% 66% 67.5%
Pre-train Auto + Fine-tune 68.5% 69.5% 73.5%

Scratch Add 68.5% 66% 77.5%
Table 2: Comparing different training methods on Square in simulation, for medium amounts of human data (⇧H) but
for increasing amounts of autonomous data (#A to ⇧A to "A). All methods perform equivalently in each data regime.

B.2 Human and Autonomous Data Weights

Our experiments on Data Weights study the impact of relative sampling weights of human-to-autonomous
data in the training mixture (i.e., changing mix). These experiments keep the amount of autonomous
data fixed (#A) and investigate if success rate changes for two scales of human data (#H and ⇧H) at
different sampling ratios (75-25, 50-50, 25-75). We include these results in table form in Table 3 and
Table 4. We find that changing the training data weights has almost no impact for a given data scale.
This is line with expectations from prior work when using importance weighted objectives with highly
expressive models [34]. Guided by these results, we use the simple training from scratch setting with 50-50
human-autonomous mixtures for the remaining experiments in §4.

Env #H 75-25 #H 50-50 #H 25-75 ⇧H 75-25 ⇧H 50-50 ⇧H 25-75
Square 15.5% 22% 21% 37.5% 38.5% 41%

SoupInBasket 37% 33.5% 40.5% 72% 74% 77.5%
BookInCaddy 28.5% 30.5% 36.5% 58% 60% 62%
StackBowls 53% 59.5% 57% 69.5% 76% 68.5%

RedMugOnPlate 80% 80% 83% 82.5% 81.5% 82%
Table 3: Different training weightings of human to autonomous data in simulation have negligible effects.

Env #H 75-25 #H 50-50 #H 25-75
HangTape 47% 55% 57%

NutInsertion 59% 58% 48%
Table 4: Different training weightings of human to autonomous data in real have negligible effects.

B.3 Human and Autonomous Data Scales

Our experiments on Data Scales (Fig. 4) use a 50-50 mixture and examine how success rate is impacted by
the scale of initial human data and the ratio of human to autonomous data. We include the results in table
form in Table 5. Including some amount of autonomous data tends to have mild positive effects in most
cases, though these effects generally saturate as autonomous data scales. Increasing the scale of human
data generally has a stronger effect than adding autonomous data.

B.3.1 Human and Autonomous Data Scales under Different Policy Classes

In this section, we provide additional results on Data Scales using a 50-50 mixture, keeping the task
the same but testing two different policy classes: Diffusion Policy (DP) [5] and Action Chunking with
Transformers (ACT) [4]. Both methods are capable of modeling diverse action distribution modes. While
ACT underperforms DP in this task, the effects on success rate when re-training with different scales of
autonomous data are largely similar: there is mild improvement which appears to plateau. The compatible
results on ACT and Diffusion Policy suggest that our observations are not unique to the policy class.

15



Env #H #H + #A #H + "A ⇧H ⇧H + #A ⇧H + "A
Square 15.5% 22% 16% 44.5% 38.5% 43.5%

SoupInBasket 16.5% 33.5% 45.5% 54.5% 74% 83%
BookInCaddy 40.5% 30.5% 33% 51.5% 60% 61.5%
StackBowls 50.5% 59.5% 54% 83% 76% 81.5%

RedMugOnPlate 58% 80% 82.5% 79% 81.5% 86%
HangTape 44% 55% 46% 80% 80% 86%

NutInsertion 44% 58% 64% 53% 61% —
Table 5: Scales of human data compared to autonomous data for 50-50 co-training on various simulation (top) and
real (bottom) environments. More autonomous data often helps, but having more human data generally has a stronger
effect.

Env Method #H #H + #A #H + "A ⇧H ⇧H + #A ⇧H + "A
HangTape DP 44% 55% 48% 80% 80% 86%
HangTape ACT 26% 32% 27% 32% 44% 40%

Table 6: Scales of human data to autonomous data for 50-50 co-training on the HangTape environment when varying
the policy class between Diffusion Policy (DP) [5] and Action Chunking with Transformers (ACT) [4]. Similar trends
exist between the two policy classes: autonomous data often helps, but no more than additional human data, and the
improvement quickly plateaus.

We choose Diffusion Policy for the remainder of experiments in this work because it is a state-of-the-art IL
method and has the same policy class as a state-of-the-art offline RL method, IDQL, which we look at in
§4.4.

B.4 Multiple Collection Rounds

Our experiments on Multiple Collection Rounds (Fig. 5) measure if any positive effects of autonomous
data continue over multiple iterations. Specifically, we replace the autonomous data in the training mixture
with the latest round of autonomous data collection, and re-train the model from scratch. The amount of
autonomous data is kept constant at each round (⇧A; "A for LIBERO tasks). We investigate the effects
of multiple collection rounds at multiple scales of human data (#H and ⇧H) in simulation and at the #H
scale in real. We present the results in table form in Table 7 and Table 9, generally observing plateaus
in performance after an initial improvement in the first iteration. Interestingly, in the Square task, we
observe a slight decrease in performance. Unlike the LIBERO tasks, Square contains a more challenging
bottleneck state, and we hypothesize that subtle variations in the action distributions over multiple rounds of
autonomous data collection and training may amplify this challenge. As evidence, in Table 8, we examine
the “staged” success rate in Square over multiple iterations: note that the subtask for “moving the square”
increases in success rate while the full task (which includes the insertion bottleneck) decreases in success
rate.

Env Base Round 1 (⇧A) Round 2 (⇧A) Round 3 (⇧A) Round 4 (⇧A)
Square (#H) 15.5% 17% 13% 21% 18.5
Square (⇧H) 44.5% 38.5% 36% 35% 35%

SoupInBasket (#H) 16.5% 45.5% 60% 78% —
SoupInBasket (⇧H) 54.5% 84% 82.5% 82% —
BookInCaddy (#H) 40.5% 40% 37.5% 44% —
BookInCaddy (⇧H) 51.5% 64% 74.3% 72% —

Table 7: Multiple Rounds of autonomous collection using medium autonomous data (⇧A) and training in simulation
(#H and ⇧H). We see either saturating increases or decreases in performance.

16



Stage Base Round 1 (⇧A) Round 2 (⇧A) Round 3 (⇧A) Round 4 (⇧A)
Moves Square 67.5% 99.5% 100% 100% 94.5%
Full Success 44.5% 38.5% 36% 35% 35%

Table 8: Multiple Rounds of autonomous collection in Square (#H), illustrating the success rate for an intermediate
stage (moving the square) and the full task.

Env Base Round 1 (⇧A) Round 2 (⇧A)
HangTape (#H) 44% 55% 50%

NutInsertion (#H) 47% 57% 46%
Table 9: Multiple Rounds of autonomous collection using medium autonomous data (⇧A) in real for HangTape and
NutInsertion. We see that even though success rates improve in Round 1, they do not improve in Round 2.

B.5 Novelty-Based Reweighting Strategies

In §4.3, we consider if state novelty can be used as a proxy to extract more useful autonomous data, and
form the basis for a sampling weight. In this section, we provide more details on these novelty measures.
Given an ensemble of policies E={p1,p2,...,pN}, we instantiate two measures of novelty building on ideas
from prior work [13, 23, 30].

1. Action Novelty: Measure state novelty as proportional to the variance in the mean action predic-
tions. This variance can be measured by an ensemble of policies trained on the same data:

ActionNovelty(s)=
NA

Â
i=1

Var j(µ ji)

where µ j is the mean of the predicted action distribution p j(s) and NA is the number of action
dimensions.

2. Image Embedding Novelty: Measure state novelty as proportional to the variance in image
embeddings produced by an ensemble of vision encoders (i.e., the encoders from each policy in
E):

EmbeddingNovelty(s)=
Nh

Â
i=1

Var j(hji)

where hj=enc j(s) (i.e., the embedding from the encoder associated with policy p j) and Nh is the
number of embedding dimensions.

Given a novelty measure, we assign the training weight for state s to be proportional to exp(Novelty(s)/b)
where b is a temperature hyperparameter.

B.6 Active Learning Guided by Failures

In §4.4, we examine if we can target data collection by utilizing initial states of failed autonomous
rollouts. We provide performance trends for policies trained on different amounts of additional human and
autonomous data, both targeted and random, when added to the initial #H dataset (10 demonstrations in
the case of Square and 20 demonstrations in the case of HangTape). We see consistently that random and
targeted human data collection outperforms the same amount of random and autonomous data, and also
has a higher slope. In Square, there appears to be a dropoff in the relative improvement of targeted human
data above random human data. Neither random nor targeted autonomous data improve upon the initial
policy in Square, and the improvements from autonomous data are mild in HangTape.

B.7 Offline RL with Autonomous Successes and Failures

One can argue that failure data has more to offer than just initial states as in §4.4. We turn to offline
RL to learn directly from both successful and failure examples: modifying F to accept both successes
and failures, and setting B to be an offline RL algorithm. We use Implicit Diffusion Q-Learning
(IDQL) [34], a state of the art offline RL algorithm, that uses both success and failure data to learn
a Q-function expectile, and then uses this to sample high Q-value actions from a generative actor.

17



Figure 10: Offline RL results, compar-
ing IDQL trained on mixed success and
failure data to the naı̈ve autonomous IL
strategy (BC), and a suboptimal (SUB)
version of naı̈ve autonomous IL trained
on both successes and failures. IDQL
matches BC and slightly beats SUB.

To not introduce even more environment challenges, we use sparse
rewards provided by the same success detection function. We
use Diffusion Policy as the generative actor, resampling actions
under the Q-function at each time step. In Fig. 10, we compare
IDQL to DP trained on successful autonomous data (BC) and
a mixture of successful and failure data (SUB). We observe that
incorporating failures through IDQL does not outperform naı̈ve
autonomous IL, and only slightly outperforms the suboptimal
autonomous IL trained on success and failure data. This could be
because IDQL struggles to learn a good Q-function estimate from
such a small amount of data and such a high dimensional state
space (images). These findings are consistent with prior offline
RL results in practice [35].

B.8 Training on Out-of-Distribution Autonomous Successes

The experiments in the main text focus on training with autonomous
data that is collected from in-distribution initial states (i.e., initial states are sampled from r0 uniformly, or
in the case of the active learning experiments, a reweighted version of r0). In this section, we examine
possible benefits from training on successful autonomous data from out-of-distribution (OOD) scenarios.
More specifically, we generate the autonomous data by rolling out the initial policy from a new initial
distribution r 0

0 and collect autonomous successes which are the result of the policy generalizing to the new
distribution.
In Table 10, we examine the impact on success rates when adding OOD autonomous data in the HangTape
task. Specifically, we collect OOD autonomous data where one of two factors is varied compared to the
initial distribution: the object (i.e., the tape is changed to a different roll of tape with a different color)
and the distribution of initial object positions (i.e., the initial locations are sampled at an expanded outer
boundary of the original distribution). When adding 50 successful autonomous rollouts from either of these
OOD conditions to 50 in-distribution human demonstrations, we find positive impacts both in-distribution
and in the OOD conditions. We see a similar trend in Table 11 on the NutInsertion task, where we collect
autonomous data in OOD initial positions (i.e., the initial locations are from an expanded outer boundary)
and find that both in-distribution and OOD performance improves.
These insights suggest that OOD autonomous data—i.e., successes that are the result of generalization
in the initial policy—may be valuable, at the cost of potentially increasing environment design effort to
change the initial state distribution of the environment.

Data Mixture Success (ID) Success (OOD Position) Success (OOD Object)
50 H (ID) 80% 13% 27%

50 H (ID) + 50 A (OOD Position) 90% 23% —
50 H (ID) + 50 A (OOD Object) 83% — 51%

Table 10: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the HangTape task.

Data Mixture Success (ID) Success (OOD Object)
50 H (ID) 44% 40%

50 H (ID) + 50 (OOD Object) 52% 50%
Table 11: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the NutInsertion task.

18



Figure 11: Comparison of initial states from human demonstrations, autonomous rollouts, and rollouts from policies
co-trained on human and autonomous data. The left column shows, from the wrist camera perspective, superimposed
initial states from human data. These initial states are sampled from the initial state distribution of the task, and
correspond to the data for the #H setting. Specifically, this corresponds to 20 demonstrations for HangTape and 50
demonstrations for NutInsertion. In the middle column, we illustrate initial states from sampled successful rollouts of
the autonomous collection policy (trained on the human data). In the right column, we illustrate initial states from
successful evaluation rollouts from the #H + #A policy, which is co-trained with a 50-50 mixture of human and
autonomous data. Note that, for visualization purposes, the middle and right columns show same number of sampled
successful initial states as there are demonstrations in the left column.

B.9 Qualitative Examples of Human and Autonomous Data Distributions

In this section, we take a qualitative look at the data distributions of teleoperated human demonstrations
compared to autonomous rollouts from policies trained on the human data. We additionally compare the
distribution of rollouts from policies co-trained on human and autonomous data.
Fig. 11 illustrates sample initial state distributions from these three categories. In the left column, we
superimpose initial states from human teleoperated demonstrations; these initial states are sampled from
the initial state distribution of the task. These correspond to data sources for the #H settings of HangTape
and NutInsertion (20 and 50 demonstrations respectively). In the middle column, we sample initial states
from successful autonomous rollouts from a Diffusion Policy trained on the human data. These policies
are used as the autonomous data collection policies. Note that only a random sample of the successful
autonomous data is shown for visualization purposes (a sample of 20 and 50 for HangTape and NutInsertion
respectively). Finally, in the right column, we show sample initial states from successful rollouts of a
Diffusion Policies co-trained on the human data and autonomous data (with 50-50 data weights). These
policies correspond to the #H + #A settings from §4.2.
In Fig. 12, we similarly illustrate trajectories (end-effector positions) for human demonstrations, sampled
successful autonomous rollouts, and sampled successful rollouts of policies trained on human+autonomous
data. From Fig. 11, we see a narrowing effect in the distribution of successful initial states, which is
more pronounced in the HangTape environment. The policy trained on human demonstrations learns to
interpolate between initial locations of the tape that are represented in the human data, especially towards at
the center of the distribution. When the policy is re-trained with a mixture of human data and autonomous
data, the spread in the distribution of initial states appears to get reduced. However, note that we observe
mild overall increases in success rate from autonomous data, and so this is likely due to the policy becoming
slightly more robust towards the center of the distribution.
In Fig. 12, we observe an increased homogenization in the successful trajectory paths. This extends beyond
just the initial state distributions; note that in both the HangTape and the NutInsertion task, the segments of
the trajectories before grasping the object are straighter and less diverse than the corresponding segments

19



Figure 12: Illustration of trajectories (as 3D end-effector paths) from various policies, with green representing the start
of the trajectory and blue representing the end. For reference, we show the scene setup with a sample initial object
location in the leftmost column. The second column illustrates human teleoperated demonstration trajectories. The third
column illustrates successful autonomous rollouts from a Diffusion Policy trained on the human demonstrations (#H).
The fourth column illustrates successful rollouts from a Diffusion Policy co-trained on human data and autonomous
data (#H + #A).

in the human data. Additionally, note that the strategies used post-grasp to place the object at its final
location (hanging the tape on the hook in the case of HangTape, or placing the nut on the peg in the case
of NutInsertion) become more consistent in the autonomous data (as well as the policy co-trained on
autonomous data) compared to the human demonstrations.

C Training Hyperparameters

Diffusion Architecture Conv1D UNet
Prediction Horizon 16
Observation History 2

Num Action 8
Kernel Size 5

Num Groups 8
Step Embedding Dim 256

UNet Down Dims [256, 512, 1024]
Num Diffusion Steps 100
Num Inference Steps 10
Inference Scheduler DDIM
Observation Input FiLM

Image Encoder ResNet-18
Image Embedding Dim 256

Proprioception yes

Table 12: Hyperparameters for Diffusion Policy, shared for all simulation experiments.

For all simulation experiments, we train using Diffusion Policy [5] with the hyperparameters in Table 12
and Table 13. Our real-world experiments use the same hyperparameters, except with an observation history
of 1, a step embedding dimension of 128, and 2000 warmup steps. We train policies for the HangTape task

20



Training Steps 500K
Batch Size 64
Optimizer AdamW

Learning Rate 1e-4
Weight Decay 1e-6

Learning Rate Schedule Cosine Decay
Linear Warmup Steps 1000

Table 13: Training Hyperparameters, shared for all simulation experiments.

for 400K steps and policies for the NutInsertion task for 500K steps. For our ACT experiments, we use the
default hyperparameters from [4] except with a chunk size of 16. We execute 8 actions for each inference
step at execution time. For the HangTape task, we train policies with 20 human demonstrations for 200K
steps and policies with 50 human demonstrations for 400K steps based on model selection between 200K,
400K, and 500K steps.

21


	Introduction
	From RL to IL: Preliminaries and Related Work
	Reinforcement Learning
	Imitation Learning
	The Middle Ground: Mixed Autonomy Methods

	Challenges of Scaling Up: Analyzing Environment Design
	Challenges of Scaling Up: Analyzing Human Supervision
	Experiment Overview
	Diminishing Returns of Filtered BC
	Inconsistent Response to Novelty-Based Reweighting
	Inability to Learn from Failure Data

	Discussion
	Task Details
	Task Descriptions
	Data Scale Definitions
	Evaluation Procedure
	Success Detection and Resets
	Success Detection
	Resets


	Analyzing Human Supervision: Additional Results
	Training from Scratch vs. Fine-tuning
	Human and Autonomous Data Weights
	Human and Autonomous Data Scales
	Human and Autonomous Data Scales under Different Policy Classes

	Multiple Collection Rounds
	Novelty-Based Reweighting Strategies
	Active Learning Guided by Failures
	Offline RL with Autonomous Successes and Failures
	Training on Out-of-Distribution Autonomous Successes
	Qualitative Examples of Human and Autonomous Data Distributions

	Training Hyperparameters

